Abstract

Escherichia coli is a common pathogen in human and veterinary clinical infection. With antibiotic resistance including colistin resistance increasing globally, few antibiotic treatments are available for use against multidrug-resistant strains of E. coli. Given such circumstances, bacteriophage (phage) therapy is once again being considered as a potential alternative or adjunct to antibiotic therapy. Here, we isolated 52 phages from 816 samples from pig, chicken and duck farms in 4 provinces in China and identified a novel Escherichia phage, vB_EcoStr-FJ63A, from pig feces. Morphological observation showed that phage vB_EcoStr-FJ63A had an icosahedral capsid and an inflexible tail. Whole-genome sequencing revealed a double-stranded DNA genome of 168,157 bp (including 271 coding sequences) with a GC content of 40.29%. Bioinformatic analysis classified phage vB_EcoStr-FJ63A as a Krischvirus, belonging to Straboviridae. The phage was relatively stable at pH 4–10 and below 60℃. It was lytic against a wide variety of colistin-resistant strains of E. coli from various animals, with one-step growth curves showing a latent period of 30 min and burst size of ∼11 PFU per infected cell. Maximum bactericidal activity was achieved within 2 h. No antibiotic resistance or virulence genes were detected in the phage genome. Further studies are warranted to develop phage vB_EcoStr-FJ63A as a potential biocontrol agent against colistin-resistant E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call