Abstract

In this paper, power management technique utilized in the direct down-conversion non-quadrature transceiver is presented for the low-power application of vital sign detection. The simultaneous switching noise (SSN) and overshoot and undershoot of the transient waveform distortion resulting from a pulse signal will give rise to interference with a vital sign signal. The pulse width, rise/fall time, and period of pulse bias are analyzed to mitigate the interference in this investigation. Significant issues about direct-current (DC) offset and noise confronted by the presented technique are addressed based on mathematical analysis. In radio-frequency (RF) transceiver architecture including power amplifier (PA), low-noise amplifier (LNA), and mixer, the current-reused (CRU) topology is utilized to achieve low DC power consumption. The post-layout simulation results exhibit that power consumption of the transceiver using the optimized pulse bias is reduced to 40% of the power consumption for transceiver applying the DC bias. In addition, DC offset and null detection point can be alleviated by tunable phase shifter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.