Abstract

A numerical investigation into determining the thermal and ventilation capability of wind towers integrated with the heat pipe technology was carried out in this work. The water-charged copper heat pipes were systematically arranged in a horizontal orientation and integrated inside a modern roof-mounted wind tower. Water was used as the working fluid instead of synthetic refrigerants in order to make the system carbon-neutral alongside maintaining the indoor air quality of the built environment. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with the momentum, continuity and energy equations were solved using the commercial Computational Fluid Dynamics (CFD) ANSYS code for velocity and pressure field simulations. Using the inlet wind speeds ranging from 1m/s to 5m/s, the results of the study showed that the proposed cooling system was capable of meeting the regulatory fresh air intake requirements per occupant of 10L/s. In addition, the findings determined that a passive cooling capacity of up to 11K was achievable when the system was subjected to inlet temperatures of 310K or 37°C. The work characterised the sustainable operation of wind tower in delivering energy-free ventilative cooling in regions encompassing hot and dry climatic conditions. The technology presented in this work is currently under an Intellectual Property (IP) protection (GB1321709.6).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call