Abstract

A novel low-complexity cascaded model predictive control method for permanent magnet synchronous motors is proposed to achieve a fast dynamic response to ensure the system’s steady-state performance. Firstly, a predictive speed controller based on an extended state observer is designed in the outer speed loop to improve the anti-interference ability of the system; then, a low-complexity three-vector predictive control algorithm is adopted in the current inner loop, taking into account the steady-state performance of the system and lower computational burden. Finally, a comparative analysis is conducted between the proposed method and traditional methods through simulation and experiments, proving that the proposed method performs well in dynamic and static performance. On this basis, the computational complexity of the current inner loop three-vector prediction algorithm is effectively reduced, indicating the correctness and effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.