Abstract

A novel recombinant human growth hormone (rhGH) fusion protein (VRS-317) was designed to minimize receptor-mediated clearance through a reduction in receptor binding without mutations to rhGH by genetically fusing with XTEN amino acid sequences to the N-terminus and the C-terminus of the native hGH sequence. Although in vitro potency of VRS-317 was reduced approximately 12-fold compared with rhGH, in vivo potency was increased because of the greatly prolonged exposure to the target tissues and organs. VRS-317 was threefold more potent than daily rhGH in hypophysectomized rats and fivefold more potent than daily rhGH in juvenile monkeys. In juvenile monkeys, a monthly dose of 1.4 mg/kg VRS-317 (equivalent to 0.26 mg/kg rhGH) caused a sustained pharmacodynamic response for 1 month equivalent to 0.05 mg/kg/day rhGH (1.4 mg/kg rhGH total over 28 days). In monkeys, VRS-317, having a terminal elimination half-life of approximately 110 h, was rapidly and near-completely absorbed, and was well tolerated with no observed adverse effects after every alternate week subcutaneous dosing for 14 weeks. VRS-317 also did not cause lipoatrophy in pig and monkey studies. VRS-317 is currently being studied in GH-deficient patients to confirm the observations in these animal studies. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:2744–2754, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call