Abstract

BackgroundTick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. The basis of this heterogeneity is largely unknown, but part of this variation is likely due to host genetic. We have previously found that BALB/c mice exhibit intermediate susceptibility to the infection of TBE virus (TBEV), STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, carrying 12.5% of the STS genome on the background of the BALB/c genome is even more susceptible than BALB/c. Importantly, mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr3, Ccr5, Ifnl3 and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. As they cannot be responsible for the phenotypic difference of the two strains, we searched for the responsible STS-derived gene-locus. Of course the STS-derived genes in CcS-11 may operate through regulating or epigenetically modifying these non-polymorphic genes of BALB/c origin.MethodsTo determine the location of the STS genes responsible for susceptibility of CcS-11, we analyzed survival of TBEV-infected F2 hybrids between BALB/c and CcS-11. CcS-11 carries STS-derived segments on eight chromosomes. These were genotyped in the F2 hybrid mice and their linkage with survival was tested by binary trait interval mapping. We have sequenced genomes of BALB/c and STS using next generation sequencing and performed bioinformatics analysis of the chromosomal segment exhibiting linkage with TBEV survival.ResultsLinkage analysis revealed a novel suggestive survival-controlling locus on chromosome 7 linked to marker D7Nds5 (44.2 Mb). Analysis of this locus for polymorphisms between BALB/c and STS that change RNA stability and genes’ functions led to detection of 9 potential candidate genes: Cd33, Klk1b22, Siglece, Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3. One of them, Cd33, carried a nonsense mutation in the STS strain.ConclusionsThe robust genetic system of recombinant congenic strains of mice enabled detection of a novel suggestive locus on chromosome 7. This locus contains 9 candidate genes, which will be focus of future studies not only in mice but also in humans.

Highlights

  • Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia

  • The disease is caused by tick-borne encephalitis virus (TBEV), a flavivirus of the family Flaviviridae, which besides TBE virus (TBEV) includes West Nile virus (WNV), dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), and several other viruses causing extensive morbidity and mortality in humans

  • Mouse orthologs of human TBEV controlling genes: Oas1b, Cd209, Tlr3, Ccr5, Il10 and Ifnl3 are in CcS-11 localized on segments derived from the strain BALB/c (Fig. 1), so they are identical in both BALB/c and CcS-11 and cannot be responsible for the phenotypic difference of the two strains

Read more

Summary

Introduction

Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. Mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr, Ccr, Ifnl and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. The disease is caused by tick-borne encephalitis virus (TBEV), a flavivirus of the family Flaviviridae, which besides TBEV includes West Nile virus (WNV), dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), and several other viruses causing extensive morbidity and mortality in humans. Ticks act as both the vector and reservoir for TBEV.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call