Abstract

Cytophaga hutchinsonii is an aerobic cellulolytic gliding bacterium. The mechanism of its cell motility over surfaces without flagella and type IV pili is not known. In this study, mariner-based transposon mutagenesis was used to identify a new locus CHU_1797 essential for colony spreading on both hard and soft agar surfaces through gliding. CHU_1797 encodes a putative outer membrane protein of 348 amino acids with unknown function, and proteins which have high sequence similarity to CHU_1797 were widespread in the members of the phylum Bacteroidetes. The disruption of CHU_1797 suppressed spreading toward glucose on an agar surface, but had no significant effect on cellulose degradation for cells already in contact with cellulose. SEM observation showed that the mutant cells also regularly arranged on the surface of cellulose fiber similar with that of the wild type strain. These results indicated that the colony spreading ability on agar surfaces was not required for cellulose degradation by C. hutchinsonii. This was the first study focused on the relationship between cell motility and cellulose degradation of C. hutchinsonii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call