Abstract
The segmentation process is considered the significant step of an image processing system due to its extreme inspiration on the subsequent image analysis. Out of various approaches, thresholding is one of the most popular schemes for image segmentation. In segmentation, image pixels are arranged in various regions based on their intensity levels. In this paper, a straightforward and efficient fusion-based fuzzy model for multilevel color image segmentation using grasshopper optimization algorithm (GOA) has been proposed. Thresholding based segmentation lacks accuracy in segmenting the ambiguous images due to their complex characteristics, uncertainties and inherent fuzziness. However, the fuzzy entropy resolves these problems, but it is unable for segmenting at higher levels and also the complexity level for selecting suitable thresholds is high. The selection of metaheuristic GOA reduces this problem by selecting optimal threshold values. Therefore, to increase the quality of the segmented image, a simple and effective multilevel thresholding method is exploited by using the concept of fusion which is based on the local contrast. Experimental outputs demonstrate that fusion-based multilevel thresholding is better than most specific segmentation methods and can be validated by comparing the different numerical parameters. Experiments on standard daily-life color and satellite images are conducted to prove the effectiveness of the proposed scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.