Abstract

A novel “cAMP-resistant” variant of LLC-PK 1 renal epithelial cells which is impaired in in vivo down-regulation of response following hormonal stimulation of adenylate cyclase (AC) is described. Compared to parental cells, the BIB27 mutant exhibited markedly higher in vivo activation of cAMP-dependent protein kinase (cAMP-PK) in response to the hormones salmon calcitonin (SCT) or [Arg 8]-vasopressin (AVP) or the AC activator forskolin. The activation of cAMP-PK subsequent to agonist stimulation also persisted much longer in the mutant than in LLC-PK 1 cells, although the cAMP-PK of BIB27 cells was normal in terms of both absolute levels and regulation by cAMP in vitro. Intracellular cAMP accumulation was also much higher in BIB27 than in LLC-PK 1 cells following agonist stimulation. Production of cAMP could be detected in BIB27 cells even 12 h after treatment with AVP or SCT, whereas cAMP production in LLC-PK 1 had returned to basal within 1 and 8 h, respectively. High levels of free cAMP-PK catalytic (C) subunit in BIB27 persisted even 12 h after hormone addition, meaning that the higher cAMP production in BIB27 did not result in the normal down-regulation of cAMP-PK C subunit levels. In vitro AC activity in BIB27 cell homogenates could be stimulated by hormones or receptor-independent agonists, but to a lesser extent than in LLC-PK 1 cell homogenates. The SCT and AVP concentrations promoting half-maximal AC activation in BIB27 cells were about 10- and 3-fold higher than parental, respectively. BIB27 accordingly appeared to possess a mutation in AC responsible for the impairment of both in vitro response to agonists and the normal in vivo down-regulation processes following hormonal stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.