Abstract
Breast cancer is the most common type of cancer occurring among women in the United States. Nitric oxide (NO) is endogenous signaling molecules that regulate biological processes. NO has the potential to induce either cancer progression or cancer cell apoptosis depending on intra-tumoral NO concentration. High levels of NO have a cytotoxic effect on cancer cells. A novel cytotoxic gas delivery system has been developed using NO-loaded echogenic liposomes (ELIP) for breast cancer treatment. Empty ELIP and NO-ELIP were prepared using the previously developed freezing-under-pressure method with modified lipid composition. Echogenicity of NO-ELIP was measured to determine the stability of NO-ELIP. Two types of breast cancer cell (BCC) lines, MDA-MB-231 and MDA-MB-468, were utilized. MTT assay was performed after NO-ELIP treatment to determine BCC viability. Echogenicity data demonstrated improved stability of NO-ELIP with the use of BSA for resuspension of NO-ELIP. Cell death induced by NO-ELIP was not from lipid cytotoxicity but from NO. The cytotoxic effect of NO-ELIP on BCC was highly dependent on NO-ELIP concentration. NO-ELIP in concentration of 1.0-2.0 mg/ml induced dramatically decreased BCC viability. This novel cytotoxic gas delivery nanomedicine using liposomal carriers, NO-ELIP, has the potential to provide improved therapeutic effect for breast cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.