Abstract

In pursuit of the objective of implementing fifth-generation communication technology, a LiMg2P3O10 microwave dielectric ceramic was developed in this study, and an ultra-wideband dielectric resonant antenna was fabricated. Rietveld refinement confirmed that the monoclinic crystal structure of LiMg2P3O10 ceramics is constituted of MgO6 octahedral chains and shared angle PO4 tetrahedra. The impact of chemical bond characteristics on properties was explored through P-V-L theory. The primary contributions to the intrinsic properties were investigated through infrared spectroscopy. The LiMg2P3O10 ceramics sintered at 830 °C were found to have the best microwave dielectric properties (εr = 6.16, Q × f = 33,573 GHz (at 15.538 GHz), and τf = −35.6 ppm/°C). A novel ultra-wideband dielectric resonant antenna with 53.7 % relative bandwidth, 6.53 dBi maximum gain and 81.7 % radiation efficiency was designed and fabricated. Its wide ultra-wideband characteristics makes it suitable for signal transmission in modern wireless communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.