Abstract

Two complexes of N1-(2-aminoethyl)propane-1,3-diamine (AEPD), [Ni(AEPD)2](NO3)2 (1) and [Cu2( μ-Cl)2(AEPD)2](NO3)2·2H2O (2), are prepared and identified by elemental analysis, Fourier transform infrared spectroscopy and UV–Vis spectroscopy, and single-crystal X-ray diffraction (for 2). Spectral and structural data reveal that the AEPD ligand transfers from nickel to copper in the reaction between 1 and copper chloride. All coordination modes of the AEPD-based ligands are studied by analysis of the Cambridge Structural Database. The nickel atom in 1 has octahedral geometry (NiN6) while X-ray structure analysis revealed that the copper atom in the binuclear structure of 2 has an elongated square-pyramidal geometry with a CuN3OCl2 environment. In the crystal network of 2, water molecules and cationic complex units along with the nitrate ions form different hydrogen bond motifs. The thermodynamic stability of the compounds and their charge distribution patterns is studied by density functional theory and natural bond orbital analysis. The ability of AEPD and its complexes to interact with 10 selected biomacromolecules is investigated by docking calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.