Abstract

BackgroundLeukocyte adhesion deficiency III (LAD-III) is a rare autosomal recessive syndrome characterized by functional deficiencies of platelets and leukocytes that occurs due to mutations in the FERMT3 gene encoding kindlin-3. Kindlin-3 is a FERM domain–containing adaptor protein that is essential in integrin activation. We have previously demonstrated that the FERM domain of kindlin-3 is structurally compact and plays an important role in supporting integrin activation in a mouse model. The impact of destabilizing the compact FERM domain in kindlin-3 on the development of LAD-III in humans remains uncertain. ObjectivesTo use primary cells from a patient with LAD-III to validate the role of the compact FERM domain in kindlin-3 function in platelets and leukocytes. MethodsThe patient is a 4-year-old girl who since infancy has displayed clinical features of LAD-III. Patient platelets and leukocytes were functionally analyzed, and structural analysis of the kindlin-3 variant was conducted. ResultsWe identified a novel homozygous missense mutation in the FERMT3 (c.412G>A, p.E138K) FERM domain. Substantially reduced levels of kindlin-3 were detected in the proband’s platelets and leukocytes. Functional evaluation verified that integrin αIIbβ3-mediated platelet activation, spreading, and aggregation and β2-integrin–mediated neutrophil adhesion and spreading were significantly compromised. Structural analysis revealed that this newly identified E138K substitution in kindlin-3 destabilizes the compacted FERM domain, resulting in poor expression of kindlin-3 in blood cells and subsequent LAD-III. ConclusionWe have identified a novel missense mutation and verified the functional significance of the compact kindlin-3 FERM domain in supporting integrin functions in platelets and leukocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call