Abstract

Fanconi anemia (FA) is an autosomal recessive disease characterized by pancitopenia, congenital malformations, predisposition to cancers and chromosomal instability. We report the clinical and molecular features of a patient initially identified as a potential FA case only because of chemotherapy toxicity during the treatment of a T-lineage acute lymphoblastic leukemia (ALL). Cells from this patient showed a moderate chromosomal instability, increasing sensitivity to DNA crosslinking agents but normal response to ionizing radiation. The analysis of FA proteins demonstrated a marked reduction of FANCD2 (>95%), but normal levels of FANCA or FANCG. Interestingly, this defect was associated with a homozygous missense mutation of FANCD2, resulting in a novel amino-acid substitution (Leu153Ser) at residue Leu153, which is highly conserved through evolution. The FANCD2(L153S) protein, whose reduced expression was not due to impaired transcription, was detected also in its monoubiquitinated form in the nucleus, suggesting that the mutation does not affect post-translation modifications or subcellular localization but rather the stability of FANCD2. Therefore, the hypomorphic Leu153Ser mutation represents the first example of a FANCD2 defect that might promote clonal progression of tumors, such as T-ALL, and severe chemotherapy toxicity in patients without any clinical manifestations typical of FA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.