Abstract

In this work, we consider an eavesdropping scenario in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve). In this setting, we exploit machine learning (ML) tools to design a hard decoding scheme by using precoded pilot symbols as training data. Within this, we propose an ML framework for a multi-antenna hard decoder that allows an Eve to decode the transmitted message with decent accuracy. We show that MU-MISO systems are vulnerable to such an attack when conventional block-level precoding is used. To counteract this attack, we propose a novel symbol-level precoding scheme that increases the bit-error rate at Eve by obstructing the learning process. Simulation results validate both the ML-based attack as well as the countermeasure, and show that the gain in security is achieved without affecting the performance at the intended users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call