Abstract

The Hammerstein–Wiener model is a nonlinear system with three blocks where a dynamic linear block is sandwiched between two static nonlinear blocks. For parameter learning of the Hammerstein–Wiener model, the synchronous parameter learning methods are proposed to learn the model parameters by constructing hybrid model of the three series block, such as over parameterization method, subspace method and maximum likelihood method. It should be pointed out that the aforementioned methods appeared the product term of model parameters in the process of parameter learning, and parameter separation method is further adopted to separate hybrid parameters, which increases the complexity of parameter learning. To address this issue, a novel three-stage parameter learning method of the neuro-fuzzy based Hammerstein–Wiener model corrupted by process noise using combined signals is developed in this paper. The combined signals are designed to completely separate the parameter learning issues of the static input nonlinear block, the linear dynamic block and the static output nonlinear block, which effectively simplifies the process of parameter learning of the Hammerstein–Wiener model. Parameter learning of the Hammerstein–Wiener model are summarized into the following three aspects: The first one is to learn the output static nonlinear block parameters using two sets of separable signals with different sizes. The second one is to estimate the linear dynamic block parameters by means of the correlation analysis method, the unmeasurable intermediate variable information problem is effectively handled. The final one is to determine the parameters of the static input nonlinear block and the moving average noise model using recursive extended least square scheme. The simulation results are presented to illustrate that the proposed learning approach yields high learning accuracy and good robustness for the Hammerstein–Wiener model corrupted by process noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call