Abstract
Because of the strong dependence on the values for the input parameters and the cluster shape, as well as the difficulties in quantifying the precipitation in constructing landslide susceptibility maps by employing existing clustering algorithms, we propose a novel method based on an Ordering Points to Identify the Clustering Structure (OPTICS) algorithm using the Hausdorff distance (OA-HD). The OA-HD algorithm distributes mapping units into many subclasses with similar characteristic values for topography and geology. To obtain more optimal subclasses, the HD was adopted to quantify precipitation. The K-medoids algorithm grouped these subclasses into five susceptibility levels according to the values of landslide density in each subclass. Applying the innovative integrated algorithms to the study area significantly improves the landslide susceptibility assessment, especially in a large study area. The method suggests new insights for better assessing landslide susceptibility in a large study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Engineering Geology and the Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.