Abstract

Based on electrochemiluminescence resonance energy transfer (ERET) from Ru(bpy)32+ to graphene oxide (GO), a novel label-free solid-state ECL sensor for sensitive detection of DNA was proposed. First, Ru(bpy)32+/AuNPs was successfully prepared by using a simple and green method and characterized by transmission electron microscopy (TEM), Energy Dispersive X-ray (EDX), and UV–vis spectroscopy. Then, the Ru(bpy)32+/AuNPs colloid was assembled on the gold electrode surface for solid-state ECL film which also later could be used to immobilize thiol-derivatized, single-stranded DNA (HS-ssDNA) via Au–S interactions. The stepwise modification procedure was characterized by cyclic voltammetry(CV), electrochemical impedance spectroscopy (EIS), probe approach curves (PAC) and ECL, respectively. The resulting modified electrode was tested as ECL biosensor for DNA detection. Upon addition of GO, the strong noncovalent interaction between HS-ssDNA and GO led to ECL quenching because of ERET. When in the presence of target ssDNA (t-ssDNA), the distance between the HS-ssDNA and GO increased, which significantly hindered the ERET and, thus, resulted in the restoration of ECL. The ECL intensity of the biosensor increased linearly with t-ssDNA concentration in the range of 50–1000pM, and the detection limit is 20pM. To the best of our knowledge, this is the first application of solid-state ERET from Ru(bpy)32+ to GO and opens new opportunities for sensitive detection of biorecognition events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call