Abstract

A novel method exploiting the differential affinity of ADP and ATP to Mg 2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg 2+] reported by the membrane-impermeable 5K + salt of the Mg 2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg 2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8–7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.