Abstract

An innovative poly(urethane-urea) elastomer, which exhibited excellent stretchability, thermal stability and autonomous self-healing abilities, was synthesized from the commercially available poly(propylene glycol) (PPG), isophorone diisocyanate (IPDI), 2,4 / 2,6-toluene diisocyanate (80: 20, w / w) (TDI-80) and bis (2-aminophenyl) disulfide (DSDA). This aromatic disulfide containing poly(urethane-urea) (ss-PUs) achieved both rapid room temperature self-healing abilities and robust mechanical strength (the ultimate tensile strength was up to 4.20 ± 0.10 MPa and elongation at break was up to 954 ± 35.6%), through facile metathesis of the aromatic disulfides which embedded in hard segments. After the ss-PUs was cut into two-halves and reconnected, the mechanical properties could recover to ~ 90% of those of the original samples within 12 h at room temperature without extra self-healing agents or any change of environmental conditions.

Highlights

  • Originating from the demanding of more smart and durable materials in daily life, self-healing materials, which are able to autonomously repair damages and fatigues during their usages, are currently attractive among the most popular researches [1,2,3,4]

  • An innovative poly(urethane-urea) elastomer, which exhibited excellent stretchability, thermal stability and autonomous selfhealing abilities, was synthesized from the commercially available poly(propylene glycol) (PPG), isophorone diisocyanate (IPDI), 2,4 / 2,6-toluene diisocyanate (80: 20, w / w) (TDI-80) and bis (2-aminophenyl) disulfide (DSDA). This aromatic disulfide containing poly(urethane-urea) achieved both rapid room temperature self-healing abilities and robust mechanical strength, through facile metathesis of the aromatic disulfides which embedded in hard segments

  • We designed an aromatic disulfide containing poly(urethane-urea) elastomer ss-PUs based on disulfide metathesis exhibiting a rapid room temperature self-healing ability within minutes to hours

Read more

Summary

Introduction

Originating from the demanding of more smart and durable materials in daily life, self-healing materials, which are able to autonomously repair damages and fatigues during their usages, are currently attractive among the most popular researches [1,2,3,4]. This aromatic disulfide containing poly(urethane-urea) (ss-PUs) achieved both rapid room temperature self-healing abilities and robust mechanical strength (the ultimate tensile strength was up to 4.20 ± 0.10 MPa and elongation at break was up to 954 ± 35.6%), through facile metathesis of the aromatic disulfides which embedded in hard segments.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.