Abstract

In this paper, we construct a family of high order compact symplectic (S-HOC) schemes for the Klein–Gordon–Schrödinger (KGS) equation. The KGS can be cast into a Hamiltonian form. At first, we discretize the Hamiltonian system in space by a high order compact method which has higher convergent rate than general finite difference methods. Then the semi-discretized system is approximated in time by the Euler midpoint scheme which preserves the symplectic structure of the original system. The conserved quantities of the scheme, including symplectic structure conservation law, charge conservation law and energy conservation law, are discussed. The local truncation error and global error of the numerical solvers are investigated. Finally, some numerical verifications are presented to numerically validate the theoretical analysis. The numerical results are persuasive and illustrate the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.