Abstract

Underwater acoustic technology as an important means of exploring the oceans is receiving more attention. Denoising for underwater acoustic information in complex marine environments has become a hot research topic. In order to realize the hydrophone signal denoising, this paper proposes a joint denoising method based on improved symplectic geometry modal decomposition (ISGMD) and wavelet threshold (WT). Firstly, the energy contribution (EC) is introduced into the SGMD as an iterative termination condition, which efficiently improves the denoising capability of SGMD and generates a reasonable number of symplectic geometry components (SGCs). Then spectral clustering (SC) is used to accurately aggregate SGCs into information clusters mixed-clusters, and noise clusters. Spectrum entropy (SE) is used to distinguish clusters quickly. Finally, the mixed clusters achieve the signal denoising by wavelet threshold. The useful information is reconstructed to achieve the original signal denoising. In the simulation experiment, the denoising effect of different denoising algorithms in the time domain and frequency domain is compared, and SNR and RMSE are used as evaluation indexes. The results show that the proposed algorithm has better performance. In the experiment of hydrophone, the denoising ability of the proposed algorithm is also verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.