Abstract

This paper presents a novel inverted fuzzy decoupling scheme for multi-input multi-output (MIMO) systems with disturbance via PI controller. The emphasis is to determine a decoupling control where specific inputs and outputs are paired. This decoupling control is achieved using fuzzy logic, to reduce the reliance on model-based analysis. The inverted decoupling approach allows more flexibility in choosing the transfer functions of the decoupled apparent process. In addition, the expressions of the inverted decoupling are presented for general $$n \times n$$ processes, highlighting that the complexity of the decoupling elements is independent of the system size. The inverted fuzzy decoupling scheme is developed and compared with an ordinary inverted decoupling scheme. Based on the direct Nyquist array method, the stability conditions of the overall closed loop MIMO system in the presence of disturbance are formulated. A case study of Wood and Berry model of a binary distillation column is used to illustrate the applicability of the proposed schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call