Abstract

Interleukin-1 receptor-associated kinase-4 (IRAK4) is considered as the most upstream kinase of IRAKs and plays a vital role in Toll-like receptor/Interleukin-1 receptor (TLR/IL-1R) signal transduction. In the present study, IRAK4 from thick shell mussel Mytilus coruscus (McIRAK4) was identified and characterized. McIRAK4 showed the most similarity to its counterparts in bivalves. The conserved death domain (DD) and catalytic domain of serine/threonine kinases (STKc) were predicted in all examined IRAK4s. McIRAK4 transcripts were constitutively expressed in all examined tissues with the higher expression level in immune related tissues, and were significantly induced in haemocytes upon lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly I:C) challenge. Further, the expression of McIRAK4 was obviously repressed by dsRNA mediated RNA interference (RNAi), meanwhile the proinflammatory cytokines TNF-alpha and IL17 were down-regulated while the antiinflammatory cytokine TGF-β was up-regulated. Additionally, McIRAK4 showed a global cytoplasmic localization in HEK293T cells through fluorescence microscopy. These results collectively indicated that McIRAK4 is one member of IRAK4 subfamily and might play the potential signal transducer role in inflammatory response. The present study provides supplement for TLR-mediated signaling pathway triggered by pathogenic invasions in thick shell mussel, and contributes to the clarification of the innate immune response in molluscs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.