Abstract

SUMMARYA novel efficient interface‐tracking method is developed to gain an insight into the interface in a multiphase or multifluid system, called the modified particle binary level set (MPBLS) method, in which the binary level set function is defined to distinguish the different phases or fluids and further modified by Lagrangian particles scattered along the interface for achieving higher accuracy. The validation of the MPBLS method is carried out first by simulating the free motion of a red blood cell (RBC) in the rotating, shear and Poiseuille flows, respectively. Subsequently, further validations are performed by comparing with the experimental and numerical results published previously. As one of important applications, the MPBLS method is employed to investigate the deformation behaviors of RBCs with different shapes in a capillary. The simulations show that the healthy RBC gradually changes the geometric shape from a biconcave to a steady parachute shape. It is thus guaranteed that the RBC successfully traverses through the smaller capillaries compared with undeformed RBC. However, the unhealthy RBC with the circular or elliptical shape has different deformation behaviors, in which the steady parachute shape is much less concave at the rear and more convex in the front. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.