Abstract

BackgroundA dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present. Chemokine-mediated immune cell/neuron communication in preclinical VCR-induced pain forms an intriguing basis for the development of analgesics. In a murine VCR model, CX3CR1 receptor-mediated signalling in monocytes/macrophages in the sciatic nerve orchestrates the development of mechanical hypersensitivity (allodynia). CX3CR1-deficient mice however still develop allodynia, albeit delayed; thus, additional underlying mechanisms emerge as VCR accumulates. Whilst both patrolling and inflammatory monocytes express CX3CR1, only inflammatory monocytes express CCR2 receptors. We therefore assessed the role of CCR2 in monocytes in later stages of VCR-induced allodynia.MethodsMechanically evoked hypersensitivity was assessed in VCR-treated CCR2- or CX3CR1-deficient mice. In CX3CR1-deficient mice, the CCR2 antagonist, RS-102895, was also administered. Immunohistochemistry and Western blot analysis were employed to determine monocyte/macrophage infiltration into the sciatic nerve as well as neuronal activation in lumbar DRG, whilst flow cytometry was used to characterise monocytes in CX3CR1-deficient mice. In addition, THP-1 cells were used to assess CX3CR1-CCR2 receptor interactions in vitro, with Western blot analysis and ELISA being used to assess expression of CCR2 and proinflammatory cytokines.ResultsWe show that CCR2 signalling plays a mechanistic role in allodynia that develops in CX3CR1-deficient mice with increasing VCR exposure. Indeed, the CCR2 antagonist, RS-102895, proves ineffective in mice possessing functional CX3CR1 receptors but reduces VCR-induced allodynia in CX3CR1-deficient mice, in which CCR2+ monocytes are elevated by VCR. We suggest that a novel interaction between CX3CR1 and CCR2 receptors in monocytes accounts for the therapeutic effect of RS-102895 in CX3CR1-deficient mice. Indeed, we observe that CCR2, along with its ligand, CCL2, is elevated in the sciatic nerve in CX3CR1-deficient mice, whilst in THP-1 cells (human monocytes), downregulating CX3CR1 upregulates CCR2 expression via p38 MAP kinase signalling. We also show that the CX3CR1-CCR2 interaction in vitro regulates the release of pronociceptive cytokines TNF-α and IL1β.ConclusionsOur data suggests that CCL2/CCR2 signalling plays a crucial role in VCR-induced allodynia in CX3CR1-deficient mice, which arises as a result of an interaction between CX3CR1 and CCR2 in monocytes.

Highlights

  • A dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present

  • As well as attempting to elucidate the role of C-motif receptor 2 (CCR2)+ monocytes/ macrophages in VCR-induced allodynia in C-X3-C motif chemokine receptor 1 (CX3CR1)-deficient mice, we investigate a potential interaction between CX3CR1 and CCR2 expression in immortalised human monocytes (THP-1 cells)

  • VCR-induced monocyte infiltration in peripheral nerve tissue is significantly reduced in CCR2-deficient mice during the second VCR cycle We initially confirmed that VCR administration did not cause a measurable microglial response (Additional file 1: Figure S1A, B), before focussing our attention on the sciatic nerve, where VCR accumulates and mechanisms underlying preclinical VCR pain are most pertinent [9]

Read more

Summary

Introduction

A dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present. CX3CR1-deficient mice still develop allodynia, albeit delayed; additional underlying mechanisms emerge as VCR accumulates. Whilst both patrolling and inflammatory monocytes express CX3CR1, only inflammatory monocytes express CCR2 receptors. Chemotherapy-induced painful neuropathy (CIPN) is a dose-limiting side effect of chemotherapeutic drugs, which is poorly managed by analgesics at present [1]. It is essential that novel, more efficacious analgesics are developed and tailored according to different chemotherapeutic agents, which have a broad range of actions. This warrants a deeper understanding of the underlying drug-specific mechanisms of CIPN. Compelling evidence from preclinical models of CIPN in recent years has uncovered the importance of immune cells, such as monocytes/macrophages, and their communication at the endothelial-neuronal interface peripherally [8, 9]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.