Abstract
The utilization ratio of wind energy, which is one of the renewable energy sources, is increased around 25% since last 15 years. However, the parameters such as performance of wind turbines and climate features are not analyzed adequately. At the analysis stage of these parameters, data mining techniques are required to be used. In this study, the agglomerative hierarchical clustering method which is one of the data mining techniques is used to analyze the provinces located in the Central Anatolia Region of Turkey in terms of average wind speed. Nearest neighbor algorithm is used as the clustering algorithm. Euclidean, Manhattan and Minkowski distance metrics are used determine the optimum hierarchical clustering results in this algorithm. The achieved clustering results based on Euclidean distance metric provide the optimum inferences to expert according to other distance metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.