Abstract
The collective intelligent behaviors of insects or animal groups in nature have maintained the survival of the species for thousands of years. In this paper, a novel swarm intelligence algorithm called the social group entropy optimization (SGEO) algorithm is proposed for solving optimization tasks. The proposed algorithm is based on the social group model, the status optimization model, and the entropy model, which are the main contributions of this paper. First, the social group model and the feedback mechanism between Leaders and Followers are developed to reduce the probability of local optimum. Second, the status optimization model is described to reveal the changing rule about the population behavior states, to support the conversion between different social behaviors during evolution, to promote the algorithm to optimize quickly, and to avoid local optimization. Third, the entropy model is introduced to analyze the entropy of social groups, the change rule of difference entropy, and to set the information entropy as behavior’s criterion of state optimization. In addition, the mathematical model of the SGEO is deduced from the group theory, matter dynamics, and the information entropy theory. The convergence and parallelism of it have been analyzed and verified theoretically. Moreover, to test the effectiveness of the SGEO, it is used to solve benchmark functions’ problems that are commonly considered within the literature of evolutionary algorithms. Experimental results are compared with those of three other state-of-the-art algorithms. The superior performance of the SGEO validates its effectiveness and efficiency for the optimization problems, especially for the high-dimension problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.