Abstract
The nature and size of biological, pharmaceutical or environmental analytes complicates their extraction and detection outside of laboratories and near the site of interest by the current chromatographic methods because they require the combination of bulky extraction and detection methods. In order to solve this inefficient centralized control, a ground-breaking and miniaturized proof of concept platform is developed in this work. The platform integrates for the very first time an electro-membrane extraction process and an accurate analyte quantification method in the same device, by using electrochemical impedance spectroscopy (EIS) as analytical technique. The microfluidic flow cell, including the microfluidic components, is fabricated in polymeric materials by rapid prototyping techniques. It comprises a four-electrode platinum thin-film chip that enables the control of the microextraction and the full characterization of the process, i.e., extraction efficiency determination, at the same time. The microfluidic system has been simulated by using computational tools, enabling an accurate prediction of the effect of the different experimental conditions in the microextraction efficiency. The platform has been validated in the microextraction of the nonsteroidal anti-inflammatory drug ketoprofen in a range from 0.5 ppm to 6 ppm. The predicted microextraction efficiency values obtained by EIS were compared with those calculated from the high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD), showing an excellent agreement. This validates the high potential of this integrated and miniaturized platform for the simultaneous extraction by electro-membrane and also the analysis within the platform, solving one of the of most important limitations of current systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.