Abstract

The increasing rate of urbanization in recent decades has resulted in a global surge in the construction of slender high-rise buildings. These structures are prone to excessive wind-induced lateral vibrations in the crosswind direction owing to vortex shedding effects, causing occupant discomfort and, ultimately, dynamic serviceability failure. To reconcile the worldwide accelerated trend in constructing tall buildings with the sustainable building sector agenda, this paper proposes a novel bi-objective integrated design framework that leverages dynamic vibration absorbers (DVAs) to minimize the required material usage in the wind load-resisting structural systems (WLSSs) of occupant comfort-governed tall buildings. The framework couples structural sizing optimization for minimum-weight WLSS design (objective 1), with optimal DVA tuning for floor acceleration minimization to satisfy codified wind comfort design requirements by using the smallest DVA inertia (objective 2). Furthermore, a versatile numerical strategy is devised for the efficient solution of the proposed bi-objective optimization problem. For illustration, the framework is applied to a 15-storey steel building equipped with one of two different DVAs: a widely considered top-floor tuned mass damper (TMD) and an innovative ground-floor tuned inerter damper (TID). The derived Pareto optimal integrated (WLSS-plus-DVA) designs demonstrate that significant reduction in both structural steel usage and embodied carbon emissions can be achieved using either one of the two DVAs with moderate inertia. It is concluded that the proposed optimization-driven design framework and numerical solution strategy offer an alternative innovative approach to achieve material-efficient high-rise buildings under wind hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.