Abstract

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.

Highlights

  • Cancer is the second leading cause of mortality worldwide, with the number of new cases projected to rise by 70% over the two decades (Stewart and Wild 2017)

  • Most identified carcinogens fall within the initial group of genotoxic carcinogens (GCs), these triggering DNA mutation or chromosomal aberration (Hernandez et al 2009)

  • The objective of this study was to improve the in vitrobased detection of carcinogenic mechanisms, including differentiation between GCs and NGCs by combining multiple cellular and molecular endpoints

Read more

Summary

Introduction

Cancer is the second leading cause of mortality worldwide, with the number of new cases projected to rise by 70% over the two decades (Stewart and Wild 2017). It has been demonstrated that 70–90% of human cancers are induced via exposure to environmental agents (Wu et al 2016). Common routes of exposure to chemical carcinogens include the consumption of alcoholic beverages, tobacco smoking and occupational exposure. Cancer may be initiated via both genotoxic and nongenotoxic mechanisms (Hanahan and Weinberg 2000, 2011). Most identified carcinogens fall within the initial group of genotoxic carcinogens (GCs), these triggering DNA mutation or chromosomal aberration (Hernandez et al 2009).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.