Abstract

Qatar National Development Strategy (QNDS 2011-2016) stated that residential cooling loads count for two-thirds of the energy consumption. The extreme high air-conditioning loads raise the urgent need for novel and multifunctional technologies that reduce the thermal energy demand. The Global Sustainability Assessment System (GSAS) mandated thermal energy benchmarks to reduce the building's need for cooling. The most predominant impact on cooling loads is the solar radiation. Reflecting or reuse of solar radiation has attracted the attention of several researchers. This paper focuses on void space thermal insulation (VSTI) that functions to deliver high performance active and / or passive thermal insulation performance in buildings in tandem with managed fresh air ventilation supply for clean, healthy indoor environments. VSTI can combine the heat losses with the HVAC systems for better building performance. Different embodiments of the VSTI will include brick-block and steel frame constrictions, sandwich panels for pre-cast concrete constructions, internal wall insulation and external wall insulation. Initial modelling results showed that a VSTI panel can potentially deliver the desired level of fabric performance, using only 50% of the insulation thickness irrespective of what insulation material is used. In this paper, a dynamic simulation model was used to estimate the energy and carbon reduction due to the use of VSTI for a residential room. The results showed around 12% reduction in the cooling load and 4% in the overall energy consumption and carbon emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call