Abstract

Frozen startup of phase change heat transfer devices is a complex problem that can have a large impact on heat transfer systems. A patented novel working fluid developed at UCLA comprised of an inorganic aqueous solution (IAS) was investigated for potential effects on the freeze/thaw capabilities in phase change heat transfer devices by examining the melting process of droplets. Preliminary visual tests were conducted to gain insight into any physical processes that surface augmentation created by this fluid may have on the freezing and melting process. These tests demonstrated significant differences in liquid spreading, the melting process, and the melting rate of droplets on surfaces pre-treated with IAS. Contact angle measurements exhibited enhanced wetting properties. SEM images of frozen droplets showed that liquid freezes in the small capillary wick formed by the initial evaporation of IAS. Video of melting droplets showed a significant increase in melting rate when the surface was first treated with IAS due to superior liquid spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.