Abstract

A novel trifunctional initiator with one alkyne and two trifluoromethanesulfonate moieties was synthesized from a protected alcohol 5-hydroxyl-2-phenyl-1, 3-dioxane. The alkyne functionalized intermediate with two protected alcohol groups was synthesized by reacting with propargyl bromide. The alcohol groups were cleaved using a mixture of tetrahydrofuran and hydrochloric acid aqueous solution. In the last step the initiator was synthesized using triflic anhydride in carbon tetrachloride. The initiator was characterized by 1H NMR and used for the polymerization of 2-ethyl-2-oxazoline which gives polymers with narrow distribution. For comparison a similar initiator with two tosylates was prepared and used for the polymerization of the monomer 2-ethyl-2-oxazoline, the resulting product has a wide molecular weight distribution and most of the initiator remains unreacted after 24 h which may be due to the steric hindrance between the two tosylate groups. To further explore the steric hindrance phenomenon, a linear tosylate initiator was synthesized, but still some of the initiator remains unreacted, illustrating that both steric hindrance and electrophilic balance affect the efficiency of the cationic ring-opening polymerization. All of the polymers were characterized in detail by using 1H NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, and size exclusion chromatography to confirm the purity and distribution of the polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call