Abstract
BackgroundPlasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It’s resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS’s are not specific for PfSpdS.Methods‘Dynamic’ receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified.ResultsA crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5′-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values.ConclusionThe specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0572-z) contains supplementary material, which is available to authorized users.
Highlights
Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa
In this study a molecular dynamics (MD) simulation was used as the phase space sampling method to estimate the equilibrium and dynamic properties of the Plasmodium falciparum spermidine synthase (PfSpdS) dimer co-crystallized with AdoDATO [PDB:2I7C]
A plausible explanation for the results presented here, is that competition between the aminopropyl chains of compounds 8 and 9 with that of dcAdoMet (Figures 5 and 6) may force their binding in a reversed orientation with their chains facing the non-attacking end of the putrescine binding cavity, i.e., acting as spermidine analogues
Summary
Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). Plasmodium falciparum is the most pathogenic of the human malaria species with approximately 207 million cases in 2012 and an estimated 627,000 deaths. A pressing need exists to identify novel targets for new anti-malarial development [2]. The P. falciparum polyamine biosynthesis pathway has several unique and exploitable parasite-specific characteristics such as the association of the pathway-regulating enzymes, AdoMetDC and ODC, in a heterotetrameric bifunctional protein [6,7] and the absence of a polyamine interconversion pathway [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.