Abstract

BackgroundWe have shown previously that Chlamydophila pneumoniae contains a dual-specific Ser/Thr protein kinase that phosphorylates CdsD, a structural component of the type III secretion apparatus. To further study the role of PknD in growth and development we sought to identify a PknD inhibitor to determine whether PknD activity is required for replication.ResultsUsing an in vitro kinase assay we screened 80 known eukaryotic protein kinase inhibitors for activity against PknD and identified a 3'-pyridyl oxindole compound that inhibited PknD autophosphorylation and phosphorylation of CdsD. The PknD inhibitor significantly retarded the growth rate of C. pneumoniae as evidenced by the presence of very small inclusions with a reduced number of bacteria as seen by electron microscopy. These inclusions contained the normal replicative forms including elementary bodies (EB), intermediate bodies (IB) and reticulate bodies (RB), but lacked persistent bodies (PB), indicating that induction of persistence was not the cause of reduced chlamydial growth. Blind passage of C. pneumoniae grown in the presence of this PknD inhibitor for 72 or 84 hr failed to produce inclusions, suggesting this compound blocks an essential step in the production of infectious chlamydial EB. The compound was not toxic to HeLa cells, did not block activation of the MEK/ERK pathway required for chlamydial invasion and did not block intracellular replication of either Chlamydia trachomatis serovar D or Salmonella enterica sv. Typhimurium suggesting that the inhibitory effect of the compound is specific for C. pneumoniae.ConclusionWe have identified a 3'-pyridyl oxindole compound that inhibits the in vitro kinase activity of C. pneumoniae PknD and inhibits the growth and production of infectious C. pneumoniae progeny in HeLa cells. Together, these results suggest that PknD may play a key role in the developmental cycle of C. pneumoniae.

Highlights

  • We have shown previously that Chlamydophila pneumoniae contains a dual-specific Ser/Thr protein kinase that phosphorylates CdsD, a structural component of the type III secretion apparatus

  • In this report we show that a 3'-pyridyl oxindole compound, a known inhibitor of Janus kinase 3 (JAK3), inhibits C. pneumoniae protein kinase D (PknD) activity

  • Identification of an inhibitor of C. pneumoniae PknD protein kinase activity We have recently shown that C. pneumoniae contains three Ser/Thr protein kinases [46] and that one of these, PknD, phosphorylates CdsD, a structural component of the type III secretion system (T3SS) [45]

Read more

Summary

Introduction

We have shown previously that Chlamydophila pneumoniae contains a dual-specific Ser/Thr protein kinase that phosphorylates CdsD, a structural component of the type III secretion apparatus. Rapid and successful treatment of C. pneumoniae respiratory infections is important to ensure complete clearance of the bacteria in order to avoid infections elsewhere in the body. Antibiotics such as azithromycin, clarithromycin, erythromycin, and doxycycline have been used to treat C. pneumoniae respiratory infections [18]. Clinical isolates of Chlamydia resistant to azithromycin and erythromycin have been reported [19], and some chlamydial species including C. pneumoniae develop resistance to antibiotics in vitro [2025].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.