Abstract

Nitrile hydratase (NHase) is a non-heme iron or non-corrin cobalt enzyme having two post-translationally modified ligand residues, cysteine-sulfinic acid (alphaCys112-SO(2)H) and -sulfenic acid (alphaCys114-SOH). We studied the interaction between Fe-type NHase and isobutyronitrile (iso-BN) which had been reported as a competitive inhibitor with a K(i) value of 5 microM. From detailed kinetic studies of the inhibitory effect of iso-BN on Fe-type NHase, we found that authentic iso-BN was hydrated normally and that the impurity present in commercially available iso-BN inhibited NHase activity strongly. The inhibitory compound induced significant changes in the UV-vis absorption spectrum of NHase, suggesting its interaction with the iron center. This compound was purified by using reversed-phase HPLC and identified as 2-cyano-2-propyl hydroperoxide (Cpx) by (1)H and PFG-HMBC NMR spectroscopy. Upon addition of a stoichiometric amount of Cpx, NHase was irreversibly inactivated, probably by the oxidation of alphaCys114-SOH to Cys-SO(2)H. This result suggests that the -SOH structure of alphaCys114 is essential for the catalytic activity. The oxygen atom in Cys-SO(2)H is confirmed to come from the solvent H(2)O. The oxidized NHase was found to induce the UV-vis absorption spectral changes by addition of Cpx, suggesting that Cpx strongly interacted with iron(III) in the oxidized NHase to form a stable complex. Thus, Cpx functions as a novel irreversible inhibitor for NHase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.