Abstract

Abstract In order to give more sights into the melting (and solidification) heat transfer processes of nano-enhanced phase change material (NePCM) with invisible phase interfaces, a novel indirect method for tracking the phase interface by thermochromic liquid crystal (TLC) thermography is proposed. As an example case to demonstrate the applicability of the proposed method, the classical problem of melting heat transfer in a differentially heated rectangular cavity was revisited in the presence of NePCM of various loadings. A narrowband TLC was selected and calibrated carefully to build the hue–temperature relationship prior to being applied in the melting experiments. For validation purpose, the case of an unloaded NePCM, with a clear visible phase interface, was tested via combined direct and indirect observations. It was shown that this TLC method can easily and accurately capture the dynamic motions of the phase interface during melting. Based on the shape evolutions of the phase interface, it was concluded that for the NePCM sample with a higher loading (and hence a much greater viscosity), heat conduction becomes the dominant mode of heat transfer during melting as a result of the significantly deteriorated natural convection effect. This gives an intuitive confirmation of the hypothesis made in previous studies that were conducted using volume-average-based indirect methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call