Abstract

Protein-protein interactions are important for most biological processes and have been studied for decades. However, the detailed formation mechanism of protein-protein interaction interface is still ambiguous, which makes it difficult to accurately predict the protein-protein interaction interface residue pairs. Here, we extract the interface residue-residue contacts from the decoys in the ZDOCK protein-protein complex decoy set with RMSD mostly larger than 3Å. To accurately compute the interface residue-residue contacts, we define a new constant called interface residue pairs frequency, which counts the atom contact numbers between two interface residues. We normalize interface residue pairs frequency to pick out the top residue-residue pairs from all the possible pairs preferential to be on correct protein-protein interaction interface. When tested on 37 protein dimers from the decoy set where most decoys are incorrect, our method successfully predicts 30 protein dimers with a success rate of up to 81.1%. Higher accuracy than some other state-of-the-art methods confirmed the performance of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.