Abstract

Doubled haploid (DH) technologies accelerate maize inbred development. Recently, methods using CRISPR-Cas have created gene-edited maize DH populations, albeit with relatively low editing frequencies. Restoring fertility via haploid chromosome doubling remains a critically important production constraint. Thus, improved editing and chromosome doubling outcomes are needed. Here we obtained maternally derived diploid embryos in vivo by ectopically co-expressing Zea mays BABY BOOM and cyclin D-like gene products within unfertilized egg cells. When combined with gene editing, the in vivo method enables the production of mature seed with a maternally derived, gene-edited diploid embryo without requiring in vitro tissue culture methods nor the use of a chemical chromosome doubling agent. In summary, we report a novel approach for creating gene-edited maize DH populations that we expect can accelerate genetic gain in a scalable, cost-effective manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.