Abstract

Anthropogenic and climatic perturbations redistribute arsenic (As), antimony (Sb), and selenium (Se) within the environment. The speciation characteristics of these elements determine their behavior and biogeochemical cycling, but these redox-sensitive species are challenging to capture, with few methods able to harmonize measurements across the whole plant-soil-ecosystem continuum. In this study, we developed a novel diffusive gradient in thin films (DGT) method based on aminopropyl and mercaptopropyl bi-functionalized mesoporous silica spheres (AMBS) to achieve in-situ, simultaneous, and selective quantification of AsIII, SbIII, and SeIV, three typical/toxic but difficult to measure inorganic species. When used for environmental monitoring within a river catchment, AMBS-DGT exhibited stable/accurate predictions of these species despite varying water chemistries (ionic strength 0.01-200 mmol L-1 NO3-, pH 5-9 for AsIII and SbIII, and pH 5-7.5 for SeIV). Furthermore, river deployments also showed that time-averaged species concentrations by AMBS-DGT were reproducible compared with high-frequency sampling and measurement by high performance liquid chromatography coupled with inductively coupled plasma mass spectroscopy. When AMBS-DGT was used for sub-mm scale chemical imaging of soil solute fluxes, the method resolved concomitant redox-constrained spatial patterns of AsIII, SbIII, and SeIV associated with root O2 penetration within anaerobic soil. Improved capabilities for measurement of compartment interfaces and microniche features are critical alongside the measurement of larger-scale hydrological processes that dictate the fine-scale effects, with the AMBS-DGT achieving this for AsIII, SbIII, and SeIV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.