Abstract

Poria cocos is an important Oriental medical fungus with multiple functionalities, yet its bioactive substances and the mechanisms involved have not been fully characterized. A novel immunomodulatory protein (P. cocos immunomodulatory protein; PCP) was purified from the dried sclerotium of P. cocos (Schw.) Wolf using DE-52 cellulose and gel filtration chromatography. Chromatography and electrophoresis results indicated that the native PCP (35.6 kDa) is a disulfide-linked heterodimeric glycoprotein consisting of 14.3 and 21.3 kDa subunits with N- and O-glycosylation. PCP was capable of stimulating RAW 264.7 macrophages in vitro through the induction of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) as well as the regulation of nuclear factor-kappa B (NF-kappaB)-related gene expression. In primary mouse macrophages, PCP directly activated peritoneal cavity macrophages to induce Toll-like receptor 4 (TLR4)-mediated myeloid differentiation factor 88 (MyD88)-dependent signaling. This study demonstrated the cell surface interactions of PCP with TLR4 and the capacity of PCP for TLR4 tyrosine phosphorylation. Results obtained with peritoneal macrophages from TLR4-deficient C57BL/10ScN mice revealed that PCP-induced activation and PCP cell surface binding were significantly attenuated. Moreover, enzymatic deglycosylation decreased PCP-mediated responses, indicating that the glycosylated portion of PCP was a key factor in PCP signaling through TLR4 in peritoneal macrophages. These findings suggest that PCP is a new potential immune stimulator within P. cocos and that TLR4 is primarily responsible for PCP signaling in murine macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call