Abstract
Segmentation is an important research area in image processing, which has been used to extract objects in images. A variety of algorithms have been proposed in this area. However, these methods perform well on the images without noise, and their results on the noisy images are not good. Neutrosophic set (NS) is a general formal framework to study the neutralities’ origin, nature, and scope. It has an inherent ability to handle the indeterminant information. Noise is one kind of indeterminant information on images. Therefore, NS has been successfully applied into image processing algorithms. This paper proposed a novel algorithm based on neutrosophic similarity clustering (NSC) to segment gray level images. We utilize the neutrosophic set in image processing field and define a new similarity function for clustering. At first, an image is represented in the neutrosophic set domain via three membership sets: T, I and F. Then, a neutrosophic similarity function (NSF) is defined and employed in the objective function of the clustering analysis. Finally, the new defined clustering algorithm classifies the pixels on the image into different groups. Experiments have been conducted on a variety of artificial and real images. Several measurements are used to evaluate the proposed method's performance. The experimental results demonstrate that the NSC method segment the images effectively and accurately. It can process both images without noise and noisy images having different levels of noises well. It will be helpful to applications in image processing and computer vision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.