Abstract
Compared with general chaotic systems, a linear hyperbolic chaotic system of partial differential equations with nonlinear boundary conditions has larger parameter space, stronger sensitivity to initial condition and control parameter, better random-like behavior and so on, but it has not been employed in cryptography so far. Then using its significant properties, we present a new cryptosystem with coupled map lattices and time-varying delay. The proposed image encryption algorithm with permutation–diffusion architecture can overcome some drawbacks in the existing methods, because the sum of pixel value of original image is used for determining the permutation parameters and the previous cipher image information is utilized in the next diffusion. Theoretical analysis and computer experiments confirm that the new algorithm is efficient, practicable, and reliable, with high potential to be adopted for network security and secure communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.