Abstract

Homozygous mutations in SLC4A4, which encodes the electrogenic Na+/[Formula: see text] cotransporter (NBCe1), cause proximal renal tubular acidosis associated with extrarenal symptoms. Although 17` mutated sites in SLC4A4 have thus far been identified among patients with proximal renal tubular acidosis, the physiological significance of other nonsynonymous single-nucleotide variants (SNVs) remains largely undetermined. Here, we investigated the functional properties of SNVs in NBCe1. From the National Center for Biotechnology Information dbSNP database, we identified 13 SNVs that have not previously been characterized in the highly conserved, transmembrane domains of NBCe1-A. Immunocytochemical analysis revealed that the I551F variant was present predominantly in the cytoplasm in human embryonic kidney (HEK)-293 cells, whereas all other SNVs did not show as dramatic a change in subcellular distribution. Western blot analysis in HEK-293 cells demonstrated that the I551F variant showed impaired glycosylation and a 69% reduction in cell surface levels. To determine the role of I551 in more detail, we examined the significance of various artificial mutants in both nonpolarized HEK-293 cells and polarized Madin-Darby canine kidney cells, which indicated that only I551F substitution resulted in cytoplasmic retention. Moreover, functional analysis using Xenopus oocytes demonstrated that the I551F variant had a significantly reduced activity corresponding to 39% of that of the wild-type, whereas any other SNVs and artificial I551 mutants did not show significant changes in activity. Finally, immunofluorescence experiments in HEK-293 cells indicated that the I551F variant retained wild-type NBCe1-A in the cytoplasm. These data demonstrate that the I551F variant of NBCe1-A shows impaired transport activity predominantly through cytoplasmic retention and suggest that the variant can have a dominant negative effect by forming complexes with wild-type NBCe1-A.NEW & NOTEWORTHY Electrogenic Na+/[Formula: see text] cotransporter 1-A (NBCe1-A) in the proximal tubule regulates the acid/base balance and fluid volume homeostasis. From the National Center for Biotechnology Information dbSNP database, we identified the I551F variant of NBCe1-A, which showed reduced glycosylation, cell surface expression, and transport activity. We also found that the I551F variant can exert a dominant negative effect on wild-type NBCe1-A, suggesting its physiological significance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.