Abstract

Hypoxia is characteristic of the ovarian tumor (OC) microenvironment and profoundly affects tumorigenesis and therapeutic response. Long noncoding RNAs (lncRNAs) play various roles in tumor progression; however, the characteristics of lncRNAs in pathological responses of the OC microenvironment are not entirely understood. Through high-throughput sequencing, lncRNA expression in hypoxia (1% O2 ) and normoxia (21% O2 ) SKOV3 cells was explored and analyzed. The 5'- and 3'-rapid amplification of complementary DNA ends was used to detect the full length of the novel HIF1A-AS3 transcript. Real-time quantitative polymerase chain reaction was used to assess HIF1A-AS3 expression in OC cells and tissues. In vitro and in vivo evaluations of the biological functions of hypoxic HIF1A-AS3 were conducted. To clarify the underlying mechanisms of HIF1A-AS3 in hypoxic OC, a dual-luciferase assay, chromatin immunoprecipitation, RNA pull-down, RNA immunoprecipitation, and RNA-sequencing were used. We used high-throughput sequencing to investigate a novel lncRNA, HIF1A-AS3, as a hypoxic candidate significantly elevated in OC cells/tissues. HIF1A-AS3 was predominantly localized in the nucleus and promotedin vitro and in vivo OC growth and tumorigenesis. Hypoxia-inducible factor 1α bound to hypoxia response elements in the HIF1A-AS3 promoter region and stimulated its expression in hypoxia. Under hypoxia, HIF1A-AS3 directly integrated withY-Box binding protein 1 and inhibited its ability to bind to the promoters of p21 and AJAP1 to repress their transcriptional activity, thereby promoting hypoxic OC progression. Our results revealed the crucial role and mechanism of the novel hypoxic HIF1A-AS3 in the oncogenesis of OC. The novel HIF1A-AS3 could be a crucial biomarker and therapeutic target for future OC treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call