Abstract
This chapter announces a new four-dimensional hyperchaotic system having two positive Lyapunov exponents, a zero Lyapunov exponent, and a negative Lyapunov exponent. Since the sum of the Lyapunov exponents of the new hyperchaotic system is shown to be negative, it is a dissipative system. The phase portraits of the new hyperchaotic system are displayed with both two-dimensional and three-dimensional phase portraits. Next, the qualitative properties of the new hyperchaotic system are dealt with in detail. It is shown that the new hyperchaotic system has three unstable equilibrium points. Explicitly, it is shown that the equilibrium at the origin is a saddle-point, while the other two equilibrium points are saddle-focus equilibrium points. Thus, it is shown that all three equilibrium points of the new hyperchaotic system are unstable. Numerical simulations with MATLAB have been shown to validate and demonstrate all the new results derived in this chapter. Finally, a circuit design of the new hyperchaotic system is implemented in MultiSim to validate the theoretical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.