Abstract
A novel method to synthesize the three phases of iron oxide nanoparticles (hematite, maghemite and magnetite) using the same non-toxic inorganic precursors via a water–organic interface under the low temperature hydrothermal conditions is reported. The synthesized particles are characterized by Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). The Brunauer–Emmett–Teller (BET) results reveal the mesoporous nature of the particles. The magnetic properties of the nanoparticles are studied by Vibrating Sample Magnetometer (VSM) at various low temperatures and also at room temperature. The XRD peaks corresponding to each sample clearly depict the presence of the respective phase of the as-prepared magnetic nanoparticles. The nanoparticles of maghemite and magnetite have saturation magnetization of 58.56 and 40.30 emu/g respectively at room temperature, whereas the particles of hematite possess very low saturation magnetization value of 1.89 emu/g. Further, the magnetization is studied at four different temperatures and the zero field cooled (ZFC) and field cooled (FC) magnetization are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.