Abstract
In this paper, attention is focused on analysis of the fragmentation of α-hydroxy-β-amino phosphonate esters designed as inhibitors of protein kinase A. An interesting proton migration mechanism in the cleavage of the P-C bond is investigated by electrospray ionization tandem mass spectrometry. A possible rearrangement mechanism is proposed and verified by high-resolution mass spectra using isotope deuterium/hydrogen-exchange technology and additionally checked by detailed DFT calculation based on Gaussian software. The result clearly indicates that this mechanism proceeds by a five-membered ring concerted transition state with activation energy 11.3 kcal mol(-1) for the compound 3f. The overall reaction is endothermic with an energy 13.2 kcal mol(-1). The effect of different substituents and different metal ions for rearrangement of these esters is studied by experiment and theory. It is concluded that this rearrangement process is energetically unfavorable and hence only occurs in the mass spectrometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.