Abstract

ABSTRACT Accurate sand and dust storm (SDS) detection is important for assessing SDS disaster risk. Machine learning (ML) based SDS detection approaches have been widely used in recent years due to their higher accuracy and better detection results. However, this approach usually requires manual annotation of numerous training samples that are, in practice, laborious and time-consuming. To overcome this challenge, we propose a novel hybrid SDS detection method that combines the support vector machine (SVM) algorithm implemented on the Google Earth Engine (GEE) cloud computing platform with a spectral index to aid the automatic labelling of training samples. Based on 8 SDS events captured by MODIS over Arid Central Asia (ACA), the effectiveness and accuracy of this method were assessed and compared to traditional approaches. The experimental results indicate that the proposed method can distinguish between mixed pixels (thin cloud and land surface) and SDS pixels and that it minimizes misdetection more effectively. This method achieved more than 98% training accuracy and validation accuracy in SDS detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.